翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Reed–Muller codes : ウィキペディア英語版
Reed–Muller code

Reed–Muller codes are a family of linear error-correcting codes used in communications. Reed–Muller codes belong to the classes of locally testable codes and locally decodable codes, which is why they are useful in the design of probabilistically checkable proofs in computational complexity theory. They are named after Irving S. Reed and David E. Muller. Muller discovered the codes, and Reed proposed the majority logic decoding for the first time. Special cases of Reed–Muller codes include the Hadamard code, the Walsh–Hadamard code, and the Reed–Solomon code.
Reed–Muller codes are listed as RM(''d'', ''r''), where ''d'' is the order of the code, and ''r'' determines the length of code, ''n'' = 2 ''r''. RM codes are related to binary functions on the field GF(2 ''r'') over the elements .
RM(0, ''r'') codes are repetition codes of length ''n'' = 2 ''r'', rate } and minimum distance ''d''min = ''n''.
RM(1, ''r'') codes are parity check codes of length ''n'' = 2 ''r'', rate R=\tfrac and minimum distance d_\min = \tfrac.
RM(''r'' − 1, ''r'') codes are parity check codes of length ''n'' = 2 ''r''.
RM(''r'' − 2, ''r'') codes are the family of extended Hamming codes of length ''n'' = 2 ''r'' with minimum distance ''d''min = 4.〔Trellis and Turbo Coding, C. Schlegel & L. Perez, Wiley Interscience, 2004, p149.〕
==Construction==
A generator matrix for a Reed–Muller code of length ''n'' = 2''d'' can be constructed as follows. Let us write:
: X = \mathbb_2^d = \.
Note that each member of the set X is a point in \mathbb_2^d. We define in n-dimensional space \mathbb_2^n the indicator vectors
:\mathbb_A \in \mathbb_2^n
on subsets A \subset X by:
:\left( \mathbb_A \right)_i = \begin 1 & \mbox x_i \in A \\ 0 & \mbox \\ \end
together with, also in \mathbb_2^n, the binary operation
: w \wedge z = (w_1 \cdot z_1, \ldots , w_n \cdot z_n ),
referred to as the ''wedge product'' (this wedge product is not to be confused with the wedge product defined in exterior algebra). Here, w=(w_1,w_2,\ldots,w_n) and z=(z_1,z_2,\ldots, z_n) are
points in \mathbb_2^n, and the operation \cdot is the usual multiplication in the field \mathbb_2.
\mathbb_2^d is a ''d''-dimensional vector space over the field \mathbb_2, so it is possible to write
(\mathbb_2)^d = \
We define in ''n''-dimensional space \mathbb_2^n the following vectors with length ''n'': ''v''0 = (1, 1, 1, 1, 1, 1, 1, 1) and
: v_i = \mathbb_
where the ''H''''i'' are hyperplanes in (\mathbb_2)^d (with dimension d −1):
:H_i = \

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Reed–Muller code」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.